

City of Kyle Parks and Recreation

Greener, Smarter, Stronger Landscaping

Local native plants deliver triple wins for
water, wildlife, and people

Greener: Why local native plants matter

As Kyle faces a future marked by hotter temperatures and less predictable rainfall, it's time for our city, neighborhoods, and individual landscapes to adjust. Many residents and planners have responded to drought by shifting to highly drought-tolerant desert plants. While conserving water is important, planting exotic desert species is not the answer. In fact, this trend could undermine critical ecological systems. To build a truly resilient, water-smart, and ecologically rich future, we must prioritize plants native to our specific local ecosystems, the Blackland Prairie and Edwards Plateau. These species offer unmatched ecological benefits, finely-tuned drought adaptation, and critical relationships with local wildlife and soil life¹. Plants outside of Kyle's ecosystems are exotic, even if they are native to other parts of Texas.

Photo: Brilliant red flowers of turk's cap are irresistible to hummingbirds.

The Risk of Exotic Plants

Exotic plants, even those chosen for drought tolerance, often carry hidden costs. Once introduced, some species can escape cultivation and become invasive, displacing native flora and altering natural ecosystems. These invasions can lead to reduced biodiversity, disrupted hydrology, and increased management costs². More importantly, many exotic species do not integrate into local food webs, leaving local insects, birds, and other wildlife without the resources they need³.

Lost Ecological Opportunity

Kyle's native plants have developed relationships over millennia with local insects, birds, and microbes, forming the foundation of our ecosystems. When we plant exotics, even ones selected for drought tolerance and are not invasive, we fail to support these critical ecological relationships. Research has shown that most native insects, particularly caterpillars that birds rely on to feed their young, cannot use exotic plants as host species³. Thus, exotic landscaping deprives wildlife of food sources and disrupts the delicate balance of local ecological communities. Furthermore, native plants form strong partnerships with helpful soil fungi, giving them a natural advantage in surviving tough conditions. These underground networks enhance nutrient uptake, water efficiency, and pathogen defense⁴. Exotic plants often do not engage with these local fungal networks, and in some cases, actively disrupt them, reducing soil health and undermining nearby native plants⁵.

Photo: A furrow bee gathers yellow pollen from upright prairie coneflower; a preferred pollen resource.

Ecosystem Services: Only Natives Deliver the Full Package

Photo: A Black-chinned Hummingbird gets nectar from Red Yucca.

Local native plants offer more than just drought resistance. They provide ecosystem services that exotics cannot match. These include:

- Water filtration and soil stabilization through deep-rooted perennial grasses⁶
- Carbon storage in long-lived native prairie and wood land systems^{6,7}
- Pollination support for native bees, butterflies, and birds that depend on specific floral structures and bloom times⁸
- Habitat creation for thousands of species, including imperiled wildlife unique to Texas⁹

By choosing local natives, we restore these functions and enhance the resilience and livability of our urban spaces.

Smarter: Not All Drought Tolerance is Equal

In response to growing drought concerns, some well-intentioned landscape designers suggest desert species like Agave and Yucca from the Chihuahuan or Sonoran deserts. These species are valuable in their native desert habitats. However, they can behave unpredictably or disruptively in wetter regions like the Texas Hill Country. Research suggests that some extreme desert species extract water rapidly from shallow soils which can reduce deeper infiltration and increase drought stress for adjacent native species during dry periods¹⁰. In contrast, local native species, such as Little Bluestem (*S. scoparium*), Prairie Penstemon (*P. cobaea*), Sideoats Grama (*B. curtipendula*), etc., are specifically adapted to the rainfall patterns, soils, and temperatures of Kyle. These species maintain hydraulic stability, support diverse root fungi, and preserve critical soil moisture layers^{11, 12}.

Photo: Prairie Penstemon (*P. cobaea*)
© Sean Fitzgerald- used by permission

Stronger: Natives are Better Investments

A photograph showing a dense field of purple coneflowers (Echinacea) in the foreground and middle ground. In the background, there is a wall made of large, irregular stone blocks. The flowers have distinct purple petals and a prominent orange-brown center. The overall scene is a natural, landscaped area.

While exotic plants can fail under local extremes, locally native plants are built for this climate. Studies show that exotic plants, even those labeled as drought tolerant, do not perform as well as local native plants specifically adapted to local conditions^{13,14,15,16}. This translates into fewer replacements, lower maintenance costs, and greater long-term resilience for cities and homeowners alike.

Greener, Smarter, Stronger - By Design

To meet the challenges of growth and climate change, the city of Kyle is moving beyond simply drought-tolerant exotics and is embracing the full ecological power of local native plants. These plants are more than landscape choices, they are critical infrastructure for ecological health, urban resilience, and generational sustainability. By landscaping with such species, we make a smart investment in water conservation, biodiversity, and community well-being. It's the triple win. Greener, smarter, stronger isn't just a catchphrase, it's a promise we fulfill when we plant the native species that know this land and nourish its future.

References:

1. Finch, D. M. (2004). Assessment of grassland ecosystem conditions in the Southwestern United States (Vol. 1). U.S. Department of Agriculture, Forest Service. <https://research.fs.usda.gov/treesearch/7394>
2. Mircea D-M, Boscaiu M, Sestras RE, Sestras AF, Vicente O. (2025). Abiotic Stress Tolerance and Invasive Potential of Ornamental Plants in the Mediterranean Area: Implications for Sustainable Landscaping. *Agronomy*. 15(1):52. <https://doi.org/10.3390/agronomy15010052>
3. Tallamy, D. W. (2007). Bringing nature home: How you can sustain wildlife with native plants. Timber Press.
4. Afkhami ME, McIntyre PJ, Strauss SY. (2014). Mutualist-mediated effects on species' range limits across large geographic scales. *Ecol Lett.*, Oct;17(10):1265-73. doi: 10.1111/ele.12332. Epub 2014 Jul 22. PMID: 25052023.
5. Torres, N., Herrera, I., Fajardo, L. et al. (2021). Meta-analysis of the impact of plant invasions on soil microbial communities. *BMC Ecol Evo* 21, 172. <https://doi.org/10.1186/s12862-021-01899-2>
6. Ojija F. (2024). Perennial grasses: natural allies for soil health and biodiversity, climate change mitigation, and invasive plant management. *Grass Research* 4: e020 <https://doi.org/10.48130/graress-0024-0019>
7. Liao C, Luo Y, Fang C, Li B (2010) Ecosystem Carbon Stock Influenced by Plantation Practice: Implications for Planting Forests as a Measure of Climate Change Mitigation. *PLoS ONE* 5(5): e10867. doi:10.1371/journal.pone.0010867
8. Tartaglia, E.S., Aronson, M.F. (2024). Plant native: comparing biodiversity benefits, ecosystem services provisioning, and plant performance of native and non-native plants in urban horticulture. *Urban Ecosystems* 27, 2587–2611. <https://doi.org/10.1007/s11252-024-01610-5>
9. Fulbright, T. E., & Hickman, K. R. (2011). Exotic Grass Invasion and Wildlife Abundance and Diversity in the South-Central United States. *Wildlife Society Bulletin*, 37(3), 503–509.
10. Bergsten, Steven J., “Certain Agave Species Exhibit the Capability to be Moderately Productive Under Conditions of High Salt and Drought Stress” (2013). All Theses and Dissertations. 3818. <https://scholararchive.byu.edu/etd/3818>
11. Freitas, R. S. (2024). Stress tolerance mechanisms of invasive *Cenchrus ciliaris* and three co-occurring native species (Master's thesis). Texas Tech University. <https://ttu-ir.tdl.org/items/59e6ac56-efa4-4b2a-be93-1d8adbacca05>
12. Applewhite, J. K. (2008). Aggregate stability, infiltration, and glomalin in eroded and compacted soils on Fort Hood Military Reservation (Master's thesis, Texas A&M University). Texas A&M University Libraries. <https://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-1542>
13. Wied JP, Perotto-Baldivieso HL, Conkey AAT, Brennan LA, and Mata JM (2020) Invasive grasses in South Texas rangelands: historical perspectives and future directions. *Invasive Plant Sci. Manag* 13: 41–58. doi: 10.1017/inp.2020.11
14. Miller, G. O. (2013). Landscaping with native plants of Texas. Taylor Trade Publishing. <https://books.google.com/books?hl=en&lr=&id=JMn6AgAAQBAJ>
15. Davis, A. M. (2013). Native plant palettes: Perceptions of North Texas homeowners in upper-income suburbia (Master's thesis, University of Texas at Arlington). MavMatrix. https://mavmatrix.uta.edu/context/landscapeearch_theses/article/1017/type/native/viewcontent
16. Chen, J. J. (2023). Water conservation through drought-resilient landscape plants and deficit irrigation (Master's thesis, Utah State University). DigitalCommons@USU. <https://digitalcommons.usu.edu/etd/8817/>

For more information:
Conservation@cityofkyle.com

